切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 759 -764. doi: 10.3877/ cma.j.issn.1674-134X.2024.06.009

综述

磷脂酰肌醇-3激酶/蛋白激酶B通路在骨关节炎的作用
刘健1,2, 李嘉欢1, 张凯1, 谭飞1, 王静1, 邓泽群3, 林志强1, 周胜虎2,()   
  1. 1.730000 兰州,甘肃中医药大学第一临床医学院
    2.730050 兰州,解放军联勤保障部队第九四〇医院关节外科
    3.750004 银川,宁夏医科大学
  • 收稿日期:2024-07-13 出版日期:2024-12-01
  • 通信作者: 周胜虎
  • 基金资助:
    兰州市科技计划项目(2023-2-11)甘肃中医药大学导师专项(2023YXKY015)

Role of phosphatidylinositol 3-kinase/protein kinase B pathway in osteoarthritis

Jian Liu1, Jiahuan Li1, Kai Zhang1, Fei Tan1, Jing Wang1, Zequn Deng2, Zhiqiang Lin1, Shenghu Zhou3,()   

  1. 1.The First Clinical Medical School of Gansu University of Chinese Medicine, Lanzhou 730000, China
    2.Ningxia Medical University, Yinchuan 750004, China
    3.The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou730050,China
  • Received:2024-07-13 Published:2024-12-01
  • Corresponding author: Shenghu Zhou
引用本文:

刘健, 李嘉欢, 张凯, 谭飞, 王静, 邓泽群, 林志强, 周胜虎. 磷脂酰肌醇-3激酶/蛋白激酶B通路在骨关节炎的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 759-764.

Jian Liu, Jiahuan Li, Kai Zhang, Fei Tan, Jing Wang, Zequn Deng, Zhiqiang Lin, Shenghu Zhou. Role of phosphatidylinositol 3-kinase/protein kinase B pathway in osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(06): 759-764.

骨关节炎(OA)是中老年人群常见的骨科疾病之一,给患者生活质量带来严重影响,其病因及病理学机制尚不明确,目前尚无有效防治措施,因此深入研究骨关节炎的发病机制具有重要意义。磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)信号通路是一种重要的细胞活动的信号通路,并通过AKT作用于多种类型的下游因子,参与正常细胞和肿瘤细胞代谢、生长、自噬、凋亡和血管生成等。近年研究发现PI3K/AKT信号通路与OA的发生发展密切相关。因此,有必要就PI3K/AKT信号通路与OA的关系进行综述,探讨此信号通路在OA治疗中的意义。

Osteoarthritis is one of the common orthopedic diseases in the middle-aged and elderly people, which has a serious effect on the quality of life of the patient, the pathogenesis of the disease is not clear,there is no effective cure measures, so further study of the pathogenesis of osteoarthritis is of great significance.phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, an important signaling pathway of cellular activity impacts a variety of downstream factors through AKT, which is involved in the cell metabolism, growth, autophagy, apoptosis, and angiogenesis in normal and tumor cells. Recent studies have found that PI3K/AKT signaling pathway is closely related to the occurrence and development of OA. Therefore,it is necessary to review the relationship between PI3K/AKT signaling pathway and OA, and explore the significance of this signaling pathway in OA treatment.

图1 PI3K/AKT(磷脂酰肌醇-3激酶/蛋白激酶B)信号通路及其下游途径
Figure 1 PI3K/AKT signaling pathway and its downstream pathway
表1 靶向PI3K/AKT信号通路药物
Table 1 Targeted drugs of PI3K/AKT signaling pathway
[1]
中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心(湘雅医院), 等. 中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志,2021, 41( 18 ): 1291-1314.
[2]
贾笛, 韦佳佳, 段修权, 等. 基于全球视角的中国骨关节炎疾病负担分析[J]. 现代预防医学, 2022, 49( 13 ): 2312-2316.
[3]
GBD Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the global burden of disease study 2021[J/OL]. Lancet Rheumatol, 2023, 5( 9 ): e508-e522. DOI:10.1016/S2665-9913( 23 )00163-7.
[4]
张莹莹, 李旭东, 杨佳娟, 等. 中国40岁及以上人群骨关节炎患病率的Meta分析[J]. 中国循证医学杂志, 2021, 21( 4 ): 407-414.
[5]
Miricescu D, Totan A, Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects[J/OL]. Int J Mol Sci, 2020, 22( 1 ): 173. DOI:10.3390/ijms22010173.
[6]
Xu K, He Y, Moqbel SAA, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway[J]. Int J Biol Macromol, 2021, 175: 351-360.
[7]
Liu J, Jia S, Yang Y, et al. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling[J/OL]. Biomed Pharmacother, 2023, 158: 114118.DOI:10.1016/j.biopha.2022.114118.
[8]
Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170( 4 ): 605-635.
[9]
Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway As drug target in human cancer[J]. J Clin Oncol, 2010, 28( 6 ): 1075-1083.
[10]
George B, Gui B, Raguraman R, et al. AKT1 transcriptomic landscape in breast cancer cells[J/OL]. Cells, 2022, 11( 15 ):2290. DOI: 10.3390/cells11152290.
[11]
Liu H, Stepicheva NA, Ghosh S, et al. Reducing Akt2 in retinal pigment epithelial cells causes a compensatory increase in Akt1 and attenuates diabetic retinopathy[J/OL]. Nat Commun, 2022, 13( 1 ):6045. DOI: 10.1038/s41467-022-33773-0.
[12]
Takahashi H, Rokudai S, Kawabata-Iwakawa R, et al. AKT3 is a key regulator of head and neck squamous cell carcinoma[J]. Cancer Sci,2021, 112( 6 ): 2325-2334.
[13]
Haddadi N, Lin Y, Travis G, et al. PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy[J/OL]. Mol Cancer, 2018, 17( 1 ): 37. DOI:10.1186/s12943-018-0803-3.
[14]
Lin C, Shao Y, Zeng C, et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol, 2018, 233( 8 ): 6135-6147.
[15]
Hoxhaj G, Hughes-Hallett J, Timson RC, et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels[J]. Cell Rep, 2017, 21( 5 ): 1331-1346.
[16]
Castellano BM, Thelen AM, Moldavski O, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex[J]. Science, 2017, 355( 6331 ): 1306-1311.
[17]
Yang H, Yu Z, Chen X, et al. Structural insights into TSC complex assembly and GAP activity on Rheb[J/OL]. Nat Commun, 2021, 12( 1 ): 339. DOI: 10.1038/s41467-020-20522-4.
[18]
Jiang C, Dai X, He S, et al. Ring domains are essential for GATOR2-dependent mTORC1 activation[J]. Mol Cell, 2023, 83( 1 ): 74-89.e9.
[19]
Wu C, Qiu S, Liu P, et al. Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway[J]. J Ethnopharmacol, 2018, 211: 89-100.
[20]
Luo Y, Zhou F, Wang X, et al. Inhibition of cc chemokine receptor 10 ameliorates osteoarthritis via inhibition of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin pathway[J/OL]. J Orthop Surg Res, 2024, 19( 1 ): 158. DOI: 10.1186/s13018-024-04642-x.
[21]
Cui X, Wang S, Cai H, et al. Overexpression of microRNA-634 suppresses survival and matrix synthesis of human osteoarthritis chondrocytes by targeting PIK3R1[J/OL]. Sci Rep, 2016, 6: 23117.DOI: 10.1038/srep23117.
[22]
Deng X, Xu H, Pan C, et al. Moderate mechanical strain and exercise reduce inflammation and excessive autophagy in osteoarthritis by downregulating mitofusin 2[J/OL]. Life Sci, 2023, 332: 122020.DOI: 10.1016/j.lfs.2023.122020.
[23]
Chen W, Zhang H. Elucidating the mechanism of IL-1β-Mediated Piezo1 expression regulation of chondrocyte autophagy and apoptosis via the PI3K/AKT/mTOR signaling Pathway[J/OL]. Tissue Cell,2024, 86: 102291. DOI: 10.1016/j.tice.2023.102291.
[24]
Chen WC, Wang SW, Lin CY, et al. Resistin enhances monocyte chemoattractant protein-1 production in human synovial fibroblasts and facilitates monocyte migration[J]. Cell Physiol Biochem, 2019,52( 3 ): 408-420.
[25]
Ding Z, Qiu M, Alharbi MA, et al. FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing[J/OL]. Bone, 2021, 148: 115905. DOI: 10.1016/j.bone.2021.115905.
[26]
Du S, Zheng H. Role of FoxO transcription factors in aging and agerelated metabolic and neurodegenerative diseases[J/OL]. Cell Biosci, 2021, 11( 1 ): 188. DOI: 10.1186/s13578-021-00700-7.
[27]
Matsuzaki T, Alvarez-Garcia O, Mokuda S, et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis[J/OL]. Sci Transl Med, 2018, 10( 428 ): eaan0746. DOI: 10.1126/scitranslmed.aan0746.
[28]
Obsilova V, Vecer J, Herman P, et al. 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4[J]. Biochemistry, 2005, 44( 34 ): 11608-11617.
[29]
Zhang Y, Dai J, Yan L, et al. DL-3-N-butylphthalide promotes cartilage extracellular matrix synthesis and inhibits osteoarthritis development by regulating FoxO3a[J/OL]. OxidMedCellLongev,2022, 2022: 9468040. DOI: 10.1155/2022/9468040.
[30]
Guo X, Pan X, Wu J, et al. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway[J]. In Vitro Cell Dev Biol Anim, 2022,58( 6 ): 491-502.
[31]
Wang B, Shao Z, Gu M, et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis[J]. J Cell Physiol, 2021, 236( 6 ): 4369-4386.
[32]
Chen YT, Hou CH, Hou SM, et al. The effects of amphiregulin induced MMP-13 production in human osteoarthritis synovial fibroblast[J/OL]. Mediators Inflamm, 2014, 2014: 759028. DOI:10.1155/2014/759028.
[33]
Liu SC, Chuang SM, Hsu CJ, et al. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression[J/OL]. Cell Death Dis, 2014, 5( 10 ): e1485. DOI: 10.1038/cddis.2014.453.
[34]
Zheng W, Li X, Li J, et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model[J]. Ann NY Acad Sci, 2022,1512( 1 ): 141-153.
[35]
Tsai CH, Liu SC, Chung WH, et al. Visfatin increases VEGFdependent angiogenesis of endothelial progenitor cells during osteoarthritis progression[J/OL]. Cells, 2020, 9( 5 ): 1315. DOI:10.3390/cells9051315.
[36]
Agas D, Hanna R, Benedicenti S, et al. Photobiomodulation by nearinfrared 980-nm wavelengths regulates pre-osteoblast proliferation and viability through the PI3K/Akt/bcl-2 pathway[J/OL]. Int J Mol Sci, 2021, 22( 14 ): 7586. DOI: 10.3390/ijms22147586.
[37]
Xu Z, Li X, Shen G, et al. The protective effect of ginsenoside Rg1 on apoptosis in human ankle joint traumatic arthritis chondrocytes[J/OL]. Evid Based Complement Alternat Med, 2022, 2022: 6798377.DOI: 10.1155/2022/6798377.
[38]
Liu Y, Zhu S, Liu J, et al. Vitexin regulates angiogenesis and osteogenesis in ovariectomy-induced osteoporosis of rats via the VDR/PI3K/AKT/ENOS signaling pathway[J]. J Agric Food Chem,2023, 71( 1 ): 546-556.
[39]
Huang LW, Huang TC, Hu YC, et al. S-equol protects chondrocytes against sodium nitroprusside-caused matrix loss and apoptosis through activating PI3K/Akt pathway[J/OL]. Int J Mol Sci, 2021,22( 13 ): 7054. DOI: 10.3390/ijms22137054.
[40]
Chen X, Chen W, Aung ZM, et al. LY3023414 inhibits both osteogenesis and osteoclastogenesis through the PI3K/Akt/GSK3 signalling pathway[J]. Bone Joint Res, 2021, 10( 4 ): 237-249.
[41]
Sabbah DA, Hajjo R, Bardaweel SK, et al. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials ( 2020-2023 )[J]. Expert Opin Ther Pat, 2024, 34( 3 ): 141-158.
[42]
Peng Y, Wang Y, Zhou C, et al. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway?[J/OL]. Front Oncol, 2022, 12: 819128. DOI: 10.3389/fonc.2022.819128.
[43]
中国老年保健协会骨关节保护与健康分会,国家骨科医学中心北京积水潭医院保膝联盟. 膝骨关节炎糖皮质激素注射应用专家共识[J].实用骨科杂志,2024,30( 10 ):865-875.
[1] 孙银松, 王德华, 周鹭, 雷一霆, 魏嘉莹, 贺尧, 董明非, 赵辰, 黄伟, 厉轲. 机器人辅助功能对线与手工机械对线全膝置换的早期疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 709-719.
[2] 谢云港, 范长海, 刘荣顺, 邓瑞晨. 不同术式治疗内侧间室膝骨关节炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 720-728.
[3] 覃辉, 钟珊, 白凡, 李陈良, 罗伦. 关节镜术后冲击波干预对膝关节炎患者的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 729-735.
[4] 黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.
[5] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[6] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[7] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[8] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[9] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[10] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[11] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[12] 孙淼, 吴盛德. 机器人辅助手术治疗小儿肾积水的范围综述[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 95-102.
[13] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[14] 吴孝琦, 罗飞, 史凡凡, 方青. 移动健康在慢性肌肉骨骼疼痛患者自我管理中的应用进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 251-256.
[15] 周微薇, 罗宇, 何朝晖. 解释消化内镜在职护士培训的现实主义整合[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(04): 276-281.
阅读次数
全文


摘要